Note on a sign-dependent regularity for the polyharmonic Dirichlet problem
نویسندگان
چکیده
A priori estimates for semilinear higher order elliptic equations usually have to deal with the absence of a maximum principle. This note presents some regularity polyharmonic Dirichlet problem that will make distinction between influence on solution positive and negative part right-hand side.
منابع مشابه
Boundary Effects in Kernel Approximation and the Polyharmonic Dirichlet Problem
Boundary effects frequently pose a challenge in approximation theory. For approximation with kernels – an approach that is effective for treating scattered data in high dimensions, on manifolds, and in settings with cumbersome geometry – this is no exception. The negative influence of the boundary is well-understood theoretically and is easily observed numerically. By exploiting a potential the...
متن کاملNote on Polyharmonic Functions1
It is the purpose of this note to show that there exists an inequality of the same general character as (1) if the hypothesis that u(P) be harmonic is replaced by the considerably weaker assumption that u(P) be a polyharmonic function of order « (w>l). The latter expression refers to a function which is continuous, has continuous derivatives up to the order 2«, and is a solution of AMu = 0, whe...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Sign-Changing Solution for a Superlinear Dirichlet Problem
We show that a superlinear boundary value problem has at least three nontrivial solutions. A pair are of one sign (positive and negative, respectively), and the third solution changes sign exactly once. The critical level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. If nondegenerate, the one sign solutions are of Morse index 1 and...
متن کاملBoundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2021.01.006